0 of 84 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 84 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
\(\begin{aligned}&\text{The graph of a polynomial function }y=f(x)\text{ in the }x\text{y-plane passes through the point }(3,5).\\&\text{What is the value of }f(3)?\end{aligned}\)
\(\begin{aligned}&\text{The graph of a polynomial function }y=f(x)\text{ in the }xy\text{-plane passes through the point }(8, 9).\\&\text{What is the value of }f(8)?\end{aligned}\)
\(\begin{aligned}&\text{The graph of the polynomial function }f\text{ in the }xy\text{-plane, where }y=f(x)\text{, has }x\text{-intercepts of}\\&(-5,0)\text{ and }(6,0).\text{ Which of the following must be true?}\end{aligned}\)
\(\begin{aligned}&\text{The graph of the function }f\text{ in the }xy\text{-plane, where }y=f(x),\text{has }x\text{-intercepts of}\\&(-5,0),~(3,0)\text{, and }(6,0)\text{. Which of the following must be true?}\end{aligned}\)
\(\begin{aligned}&\text{The function }F(m)=7m\text{ models the force, in newtons, acting on each object in a certain}\\&\text{field as a function of the object’s mass }m,\text{in kilograms. Which statement is the best}\\&\text{interpretation of }F(4)=28\text{ in this context?}\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~p(v)=150v\\
&\text{The function }p\text{ gives the relationship between the instantaneous power }p(v),\text{ in watts, }\\&
\text{and the potential difference }v,\text{ in volts, for a current of 150 amperes. Which statement}\\
&\text{is the best interpretation of }p(3)=450\text{ in this context?}\end{aligned}\)
\(\begin{aligned}
&\text{The function }f(w)=6w^{2}\text{ gives the area of a rectangle, in square feet (ft }^2),\text{ if its width is }w\text{ ft and}\\
&\text{its length is 6 times its width. Which of the following is the best interpretation of }f(14)=1,176?
\end{aligned}\)
\(\begin{aligned}&\text{The kinetic energy, in joules, of an object with mass 9 kilograms traveling at a speed of }v\\
&\text{meters per second is given by the function }K\text{, where }K(v)=\frac{9}{2}v^{2}.\text{ Which of the following }\\
&\text{is the best interpretation of }K(34) = 5,202\text{ in this context?}
\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~k(x)=-\frac{1}{2}x^2+8x+20\\
&\text{The function }k\text{ gives the estimated number of students in a school organization }x\text{ years}\\
&\text{after the organization was established, where }0\leq x\leq10.\text{ Which statement is the best}\\
&\text{interpretation of }k(4)=44?\end{aligned}\)

\(\begin{aligned}
&\text{The graph models the population, in thousands, of a town }x\text{ years since 2004, where}\\
&0<x<15.\text{ Which statement is the best interpretation of the point }(1,3.21)?\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=x+\frac{8}{11}\\
&\text{The function }f\text{ is defined by the given equation. What is the value of }f(x)\text{ when }x=\frac{3}{11}?\end{aligned}\)
\(\begin{aligned}
&\text{The function }d\text{ is defined by }d(x)=200-6^x.\text{ What is the value of }d(0)?
\end{aligned}\)
\(\begin{aligned}&\text{The function }f\text{ is defined by the equation }f(x)=7x+2.\text{ What is the value of }f(x)\text{ when}\\&x=4?\end{aligned}\)
\(\begin{aligned}
&\text{The function }f\text{ is defined by }f(x)=4x.\text{ For what value of }x \text{ does }\\
&f(x)=8?
\end{aligned}\)
\(\text{The function }f\text{ is defined by the equation }f(x)=4x-3.\text{ What is the value of }f(10)?\)
\(\begin{aligned}&\text{The function }f\text{ is defined by }f(x)=8x.\text{ For what value of }x\text{ does }\\&f(x)=72?\end{aligned}\)
\(\text{The function }f\text{ is defined by }f(x)=x^2+x+71.\text{ What is the value of }f(2)?\)
\(\begin{aligned}&\text{The function }g\text{ is defined by }g(x)=6x.\text{ For what value of }x\text{ does }\\&g(x)=54?\end{aligned}\)
\(\text{The function }f\text{ is defined by }f(x)=-5x^2-7.\text{ What is the value of }f(-1)?\)
\(\begin{aligned}&\text{The function }p\text{ is defined by }p(n)=7n^3.\text{ What is the value of }n\text{ when }\\&p(n)\text{ is equal to }56?\end{aligned}\)
\(\begin{aligned}
&\text{The function }f\text{ is defined by }f(x)=\frac{x+11}{3},\text{ and } f(a)=16 \text{, where }a\text{ is a constant.}\\
&\text{What is the value of }a?\end{aligned}\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=x^3+8x+17\\&\text{For the given function }f,\text{the graph of }y=f(x)\text{ in the }xy\text{-plane passes through the point}\\&(0,b),\text{ where }b\text{ is a constant. What is the value of }b?\end{aligned}\)
\(\text{The function }f\text{ is defined by }f(x)=8x^3+4.\text{ What is the value of }f(2)?\)
\(\begin{aligned}&\text{The function }g\text{ is defined by }g(x)=10^{3x-1}.\text{ What is the value of }x\mathrm{~when~}\\&g(x)\text{ is equal to}\text{ 10,000?}\end{aligned}\)
\(\text{The function }h\text{ is defined by }h(x)=5|x|.\text{ What is the value of }h(-3)?\)
\(\begin{aligned}&\text{The function }f\text{ is defined by }f(x)=8\sqrt{x}.\text{ For what value of }x\text{ does }\\&f(x)=48?\end{aligned}\)
\(\text{The function }f\text{ is defined by }f(x)=\frac{1}{2}(x+6).\text{ What is the value of }f(4)?\)
\(\text{The function }h\text{ is defined by }h(x)=\frac{8}{5x+6}.\text{ What is the value of }h(2)?\)
\(\begin{aligned}&\text{The function }g\text{ is defined by }g(x)=x^2+9.\text{ For which value of }x\text{ does }\\&g(x)=25?\end{aligned}\)
\(\begin{aligned}&\text{The function }w\text{ is defined by }w(r)=\frac{1}{r-8}-\frac{r-5}{-r+4.25}.\text{ What is the greatest possible value of }r\text{ such}\\&\text{that }w(r)=0?\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n(x)=2(x+8)+(x-8)\\&\text{The function }n\text{ is defined as shown.}\text{ For what value of }x \text{ is }n(x)=35?\end{aligned}\)
\(\text{The function }f\text{ is defined by }f(x)=5\left(\frac{1}{4}-x\right)^{2}+\frac{11}{4}.\text{ What is the value of }f\left(\frac{1}{4}\right)?\)
\(\begin{aligned}&\text{The function }f\text{ is defined by }f(x)=(-8)(2)^x+22.\text{ What is the }y\text{-intercept of the graph of }y=f(x)\\&\text{in the }xy\text{-plane?}\end{aligned}\)
\(\begin{aligned}
&\text{The function }f\text{ is defined by }f(x)=7x-84.\text{ What is the }x\text{-intercept of the graph of }\\&y=f(x)\text{ in the }xy\text{-plane?}\end{aligned}\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=5^x+3\\
&\text{If the given function }f\text{ is graphed in the }xy\text{-plane, where }y=f(x),\text{what is the }\\
&y\text{-intercept of the graph}?
\end{aligned}\)

\(\text{The graph of }y=f(x)\text{ is shown in the }xy\text{-plane.}\text{ What is the value of }f(0)?\)

\(\begin{aligned}&\text{The graph of }y=f(x)\text{ is shown, where the function }f\text{ is defined by }f(x)=ax^{3}+bx^{2}+cx+d\\&\text{and }a,~b,~c,\text{ and }d\text{ are constants. For how many values of }x\text{ does }f(x)=0?\end{aligned}\)

\(\begin{aligned}&\text{The graph of }y=f(x)\text{ is shown, where }f(x)=ab^x+c,\text{ and }a,~b, \text{ and } c\text{ are constants. For}\\
&\text{how many values of }x\mathrm{~does~}f(x)=0?\end{aligned}\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~y=3\left (\frac{a}{6} \right)^{x+c}-b\\
&\text{How many times does the graph of the given equation in the }xy\text{-plane cross the }x\text{-axis,}\\
&\text{where }a,b\text{ and }c\text{ are positive constants such that }a > 6\text{ and }b > c?
\end{aligned}\)
\(\begin{aligned}
&\text{The function }T(x)=\frac{22,000-6.5x}{1,000}\text{ gives the estimated air temperature }T(x),\text{ in degrees}\\&\text{Celsius (°C), surrounding a hot air balloon at an altitude of }x\text{ meters. lf the estimated air}\\&\text{temperature surrounding the hot air balloon is }16°\text{C, which of the following is closest to the}\\&\text{altitude, in meters, of the hot air balloon?}\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C(t)=240\left(\frac{53}{52}\right)^{t-15}+7\\&\text{The function }C\text{ gives the estimated number of cephalopods, a class of marine animal, in a}\\&\text{certain area, where }t\text{ is the number of months since a study began. How many months after}\\&\text{the study began was the number of cephalopods in the area estimated to be 247?}\end{aligned}\)
\(\begin{aligned}
&\text{A beaker containing a liquid is placed on a table. The function}\\
&g(t)=294+(363-294)(2.72)^{-0.103t}\text{ gives the approximate temperature, in}\\
&\text{kelvins, of the liquid }t\text{ minutes after the beaker was placed on the table. According}\\
&\text{to this function, what was the approximate temperature, in kelvins, of the liquid}\\
&\text{when the beaker was placed on the table?}\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~h(x)=x^{2}-3\\&\text{Which table gives three values of }x\text{ and their corresponding values of }h(x)\text{ for the given}\\&\text{function }h?\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~q(x)=44(4^x)\\&\text{Which table gives three values of }x\text{ and their corresponding values of }q(x)\text{ for function }q?\end{aligned}\)
\(\text{If }h(x)=2^x\text{, what is the value of }h(5)-h(3)?\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=-0.0038400x^2+15.236x-15.103\\
&\text{The model shown gives the predicted average Arctic sea ice area }f(x),\text{ in}\\
&\text{millions of square kilometers, for September of each year }x,\text{ where }x\\
&\text{represents a year and }1979\leq x\leq2012.\text{ Based on the model, what is the}\\
&\text{positive difference, in millions of square kilometers, between the predicted}\\
&\text{average Arctic sea ice area for September of the year 1991 and the predicted}\\
&\text{average Arctic sea ice area for September of the year 1992? (Round your}\\
&\text{answer to the nearest thousandth.}\end{aligned}\)
\(\text{The function }f\text{ is defined by }f(x)=\left|x-4x\right|.\text{ What value of }a\text{ satisfies }f(5)-f(a)=-15?\)
\(\begin{aligned}&\text{The function }f\text{ is defined by }f(x)=\frac{|x|}{a}-14,\text{where }a < 0.\text{ What is the product of}\\&f(15a)\text{ and }f(8a)?\end{aligned}\)
\(\begin{aligned}
&\text{The function }k\text{ is defined by }k(s)=\sqrt{s+110}.\text{ If }k(53p)=p,\text{ where }p\text{ is a constant,}\\
&\text{What is the value of }p?\end{aligned} \)
\(\begin{aligned}
&\text{The function }g\text{ is defined as }g(x)=\frac{2x-4}{(x+11)(x-6)}.\text{ If }g(a+5)=0,\text{ where }a\text{ is a constant, }\\
&\text{what is the value of }a?\end{aligned}\)
\(\begin{aligned}
&\text{The linear function }g\text{ is defined by }g(x)=b-15x,\text{where }b\text{ is a constant. If }g(c+7)=\frac{c}{4},\\
&\text{where }c\text{ is a constant, which of the following expressions represents the value of }b ?\end{aligned}\)
\(\text {If }f(x)=x+2\text{ and }g(x)=2x\text{, what is the value of }3f(-5)-g(-5)?\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=|71-2x|\\&\text{The function }f\text{ is defined by the given equation. For which of the following values of }k\\&\text{does }f(k)=3k?\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g(x)=\frac{2}{7}x+\frac{8}{5}\\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~h(x)=5x-7\\&\text{The functions }g\text{~and~}h\text{ are defined by the equations shown. Which expression is equivalent}\\&\text{to }g(x)\cdot h(x)?\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=x+4\\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g(x)=3x^2-rx+48\\&\text{The functions }f\text{ and }g\text{ are given. In function } g,~r\text{ is a constant. If }\\&f(x)\cdot g(x)=3x^{3}+192,\text{ what is the value of }r?\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r(x)=5(x-2)\\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~s(x)=x^3+nx^2+2nx+8\\&\text{For the given functions }r\text{ and }s,~n\text{ is a constant. If }r(x)\cdot s(x)=5(x^4-16),\text{what is the}\\&\text{value of }n?\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=2x+3\\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g(x)=7x-2\\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~h(x)=5x+6\\&\text{The functions }f,g,\text{ and }h\text{ are defined as shown. If }f(x)\cdot g(x)-h(x)=ax^2+bx+c,\\&\text{where }a,~b,\text{ and }c\text{ are constants, what is the value of }b?\end{aligned}\)
\(\begin{aligned}&\text{The functions }f\text{ and }g\text{ are defined as }f(x)=\frac{1}{5}x-9\text{ and }g(x)=\frac{4}{5}x+27.\text{ If the function }h\\&\text{is defined as }h(x)=f(x)+g(x),\text{ what is the }x\text{-intercept of the graph of }y=h(x)\text{ in the }xy\text{-}\\&\text{plane?}\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=7x-5\\&\text{Function }f\text{ is defined by the given equation. The function }g\text{ is defined by}\\&g(x)=f(x)-(5x-2).\text{ What is the }x\text{-coordinate of the }x\text{-intercept of the graph of}\\&y=g(x)\text{ in the }xy\text{-plane?}\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=5x-9\\&\text{Function }f\text{ is defined by the given equation. The function }g\text{ is defined by }\\&g(x)=f(x)-(3x-2).\text{ What is the }x\text{-coordinate of the~}x\text{-intercept of the graph of }\\&y=g(x)\text{ in the }xy\text{-plane?}\end{aligned}\)
\(\begin{aligned}
&\text{In the }xy\text{-plane, the point }(3, 6)\text{ lies on the graph of the function }f(x)=3x^{2}-bx+12.\\
&\text{What is the value of }b?\end{aligned}\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\begin{array}{|c|c|}\hline x&f(x)\\\hline-37&4\\\hline-9&0\\\hline33&6\\\hline\end{array}\\\\
&\text{The table shows three values of }x\text{ and their corresponding values of }f(x),\text{ where }\\
&f(x)=\frac{kx+45}{x+2}\text{ and }k\text{ is a constant. What is the value of }k?\end{aligned}\)
\(\begin{aligned}
&\text{For a particular car, the linear function }f\text{ gives the predicted power, in brake horsepower}\\
&\text{(bhp), for engine speeds between 1,000 revolutions per minute (rpm) and 6,000 rpm.}\\
&\text{According to this function, the car’s predicted power is 228 bhp at an engine speed of}\\
&\text{1,896 rpm and 600 bhp at an engine speed of 4,500 rpm. The equation}\\&
f\left(x\right)=\frac{1}{7}\left(x-a\right)+228\text{ defines }f,\text{where }x\text{ is the engine speed, in rpm, and }a\text{ is a constant}\\&\text{What is the value of }a?\end{aligned}\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g(x)=\frac{x^2-x-a}{x^2-x-b}\\
&\text{The function }g\text{ is defined by the given equation, where }a\text{ and }b\text{ are constants }f(x).\text{ In the }\\
&xy\text{-plane, the graph of }y=g(x)\text{ passes through the point }(0, 43)\text{, and }g(-43)=0.\text{ What is }\\&\text{the value of }b?\end{aligned}\)
\(\begin{aligned}
&\text{The function }f\text{ is defined by }f(x)=a^{x}-b,\text{ where }a\text{ and }b\text{ are constants. }\\
&\text{The graph of }y=f(x)\text{ in the }xy\text{-plane passes through the points }(0, -5)\\
&\text{and }(1, 2).\text{ What is the value of }a?\end{aligned}\)
\(\begin{aligned}
&\text{The function }f\text{ is defined by }f(x)=a^x+b\text{, where }a\text{ and }b\text{ are constants and }a>0.
\\&\text{In the }xy\text{-plane, the graph of }y=f(x)\text{ has a }y\text{-intercept at }(0,-20)\text{ and passes}\\&\text{through the point }(2,43).\text{ What is the value of }a-b?\end{aligned}\)
\(\begin{aligned}
&\text{The function }f\text{ is defined by }f(x)=a^x+b\text{, where }a\text{ and }b\text{ are constants and }a>0.
\\&\text{In the }xy\text{-plane, the graph of }y=f(x)\text{ has a }y\text{-intercept at }(0,-25)\text{ and passes}\\&\text{through the point }(2,23).\text{ What is the value of }a+b?\end{aligned}\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\begin{array}{|c|c|}\hline x&g(x)\\\hline-27&3\\\hline-9&0\\\hline21&5\\\hline\end{array}\\
&\text{The table shows three values of }x\text{ and their corresponding values of }g(x),\text{ where }g(x)=\frac{f(x)}{x+3}\\
&\text{and }f\text{ is a linear function. What is the }y\text{-intercept of the graph of }y=f(x)\text{ in the }xy\text{-plane?}\end{aligned}\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\begin{array}{|c|c|}\hline x&g(x)\\\hline-23&2\\\hline-9&0\\\hline19&4\\\hline\end{array}\\
&\text{The table shows three values of }x\text{ and their corresponding values of }g(x),\text{ where }g(x)=\frac{f(x)}{x+2}\\
&\text{and }f\text{ is a linear function. What is the }y\text{-intercept of the graph of }y=f(x)\text{ in the }xy\text{-plane?}\end{aligned}\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=\frac{3}{2}x+b\\
&\text{In the function above, }b\text{ is a constant. If }f(6)=7,\text{what is the value of }f(-2)?\end{aligned}\)
\(\begin{aligned}
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g(x)=ax^2+24\\
&\text{In the function above, }a\text{ is a constant. If }g(4)=8,\text{what is the value of }g(-4)?\end{aligned}\)
\(\begin{aligned}&\text{The function }f\text{ is defined by }f(x)=(x-5)(x-8)(x+k),\text{ where }k\text{ is a constant. In}\\&\text{the }xy\text{-plane, the graph of }y=f(x)\text{ passes through the point }(-2,0).\text{ What is the value of}\\&f(0)?\end{aligned}\)
\(\begin{aligned}&\text{The function }h\text{ is defined by }h(x)=(x+p)(x-2)(2x-12),\text{ where }p\text{ is a constant. In}\\&\text{the }xy\text{-plane, the graph of }y=h(x)\text{ passes through the point }(-3,0).\text{ What is the value of}\\&h(0)?\end{aligned}\)
\(\begin{aligned}
&\text{The function }g\text{ is defined by }g(x)=(x+14)(t-x),\text{ where }t\text{ is a constant. In the }xy\text{-plane,}\\
& \text{the graph of }y=g(x)\text{ passes through the point }(24,0).\text{ What is the value of }g(0)?\end{aligned}\)
\(\begin{aligned}
&\text{The function }f\text{ is defined by }f(x)=4(x-3)(x^2-k),\text{ where }k\text{ is a constant. In the }xy\text{-plane,}\\
&\text{the graph of }y=f(x)\text{ passes through the point }(-8,0).\text{ What is the value of }f(0)?\end{aligned}\)
\(\begin{aligned}
&\text{The exponential function }g\text{ is defined by }g(x)=19\cdot a^{x},\text{ where }a\text{ is a positive constant. If}\\
&g(3)=2,375,\text{ what is the value of }g(4)?\end{aligned}\)
\(\begin{aligned}
&\text{The function }v\text{ is defined by the equation }v(x)=\frac{x^2+bx+c}{(x+5)(x-19)},\text{ where }b\text{ and }c\text{ are constants.}\\
&\text{In the }xy\text{-plane, the graph of }y=v(x)\text{ passes through the points }\left(0, ~\frac{66}{95}\right)\text{and }(11,0).\text{ If}\\&v(q)=0,\text{ which of the following could be the value of }q?\\
\end{aligned}\)
\(\begin{aligned}
&\text{The function }p\text{ is defined by }p(x)=a\left(\left(x+6\right)^2-b\right)\left(\left(x+6\right)^2-c\right),\text{where }a,b,\text{ and }c\text{ are}\\&\text{constants. In that }xy\text{-plane, the graph of }y=p(x)\text{ passes through the points }(-7,24)\text{ and}\\&(0,899).\text{What is the value of }p(-12)+p(-5)?\end{aligned}\)
\(\begin{aligned}&\text{The function }q\text{ is defined by }q(x)=a|x-9|^2-87|x-9|+b,\text{ where }a\text{ and }b\text{ are constants,}\\&\text{and }a>b>87.\text{ If }q(639)=h\text{ and }q(-621)=k,\text{ where }h\text{ and }k\text{ are constants, what is the}\\&\text{value of }9(-639)^{h-k}+621(9)^{k-h}?\end{aligned}\)
\(\begin{aligned}&\text{An exponential function }f\text{ is defined by }f(x)=c^x,\text{where }c\text{ is a constant greater than }1.\text{ If}\\&f(7)=9\cdot f(5),\text{what is the value of }c?\end{aligned}\)
\(\begin{aligned}
&\text{The functions }g\text{ and }h\text{ are defined by the given equations.}\\
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g(x)=\sqrt{(x-11)^{2}+45}\\
&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~h(x)=\sqrt[3]{64}+\frac{x^{2}}{2}\\
&\text{If the value of }g(8)=t,\text{ where }t\text{ is a constant, what is the value of }h(t)?\end{aligned}\)
\(\begin{aligned}
&\text{The function }f\text{ is defined by }f(x)=a\sqrt{b-x},\text{where }a\text{ and }b \text{ are constants.}\\
&\text{In the }xy\text{-plane, the graph of }y=f(x)\text{ passes through the point }(22, 0),\\
&\text{and }f(-22) <0.\text{ Which of the following must be true?}
\end{aligned}\)
\(\begin{aligned}&\text{The function }h\text{ is defined by }h(x)=-\sqrt{x^2+bx+c}\text{ , where }b\text{ and }c\text{ are constants. In}\\&\text{the }xy\text{-plane, the graph of }y=h(x)\text{ contains the points }(2,0)\text{ and }(0,-\sqrt{334}).\text{ If }\\&h(m)=0,\text{ what is the greatest possible value of }m?\end{aligned}\)
\(\begin{aligned}&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f(x)=6(g(x))-3\\&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~g(x)=|12x-7|\\
&\text{The functions }f\text{ and }g\text{ are defined by the given equations. What is the value of }f(-10)?\end{aligned}\)

